GCE MARKING SCHEME

CHEMISTRY ASIAdvanced

JANUARY 2013

GCE CHEMISTRY - CH1

JANUARY 2013 MARK SCHEME

SECTION A

Q. $1 \quad 39$

Q. $2 \quad \mathrm{C}$
Q. $3 \quad A_{r}=\frac{(12.0 \times 6)+(88.0 \times 7)}{100}(1)=\frac{72.0+616.0}{100}=6.88(1)$
Q. 4 (a) $\Delta \mathrm{H}=\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{1}$
(b) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g}) \quad$ state symbols requires
Q. 5 The position of equilibrium moves to the right / more COS is formed (1) (By Le Chatelier's principle) the system 'removes' added 'material' to restore the position of equilibrium / accept explanation in terms of pressure (1)
Q. $6 \quad \mathrm{Ti} \quad \frac{60}{48}$
O $\frac{40}{16}$
= 1.25
= 2.5
$\therefore \mathrm{TiO}_{2}$
(1)
\therefore 1:2
(1)

SECTION B

Q. 7 (a) (i) $\quad \mathrm{A}$ helium (atom) nucleus $/ 2$ protons and 2 neutrons $/{ }^{4} \mathrm{He}^{2+}$

(iii) $(4 \times 2.6)=10.4$
(b) The frequency of the green line at 569 nm is HIGHER. than the frequency of the yellow-orange line at 589 nm . Another line is seen at 424 nm , this is caused by an electronic transition of HIGHER. energy than the line at 569 nm .
(c) (i)

(1) $\rightarrow 226$
[1]
(or by other appropriate method - note mark is for the working)
(ii) Atom economy $=\frac{{ }^{\prime} M_{r} \text { required product } \times 100}{T o t a l}$

$$
\begin{equation*}
=\frac{318 \times 100}{452}=70.4 / 70.35(\%) \tag{1}
\end{equation*}
$$

(iii) Carbon dioxide is produced (and released into the air) and this contributes to the greenhouse effect / increases acidity of sea (1) It should be trapped / a use found for it. (1)
(d) (i) Water is acting as a proton donor (1) and this combines with the carbonate ion $/ \mathrm{CO}_{3}{ }^{2-}$, giving the hydrogencarbonate ion $/ \mathrm{HCO}_{3}{ }^{-}$(1)
(ii) The pH scale runs from 0-14 / measure of acidity / alkalinity (1) $\mathrm{pH}<7$ acid / >7 alkali (1) acid stronger as pH value decreases / alkali stronger as pH value increases / 11.4 is strong alkali (1)
Q. 8 (a) (i) He may have lost carbon dioxide through leaks, this would have given a lower volume than expected. (1)
He used lower concentration of acid / diluted the acid with water and the rate of carbon dioxide evolution was slower than expected. (1)
(ii) The concentration of acid is higher in the first half (1) the collision rate is higher (1)

> (iii) \quad eg $\mathrm{k}=\frac{\mathrm{V}}{\mathrm{T}} \quad$ (1) $\quad \therefore \mathrm{k}=\frac{130}{298} \quad / \quad 0.436$ $\therefore \mathrm{~V}=0.436 \times 323=141\left(\mathrm{~cm}^{3}\right) \quad$ (1) or $\quad \underline{V}_{1}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$ (1) $\quad \therefore \mathrm{V}_{1}=\frac{323 \times 130}{298}=141\left(\mathrm{~cm}^{3}\right)$
(b) (i) $260\left(\mathrm{~cm}^{3}\right)$
(ii) $\quad 0.45(\mathrm{~g})(0.43-0.48)$
(c) The diagram shows two reasonable distribution curves with T_{2} flatter and 'more to the right' than T_{1}. (1)
Activation energy correctly labelled, or mentioned in the writing (1)
Fraction of molecules having the required activation energy is much greater at a higher temperature (thus increasing the frequency of successful collisions) (in words) (1)

The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter QWC
(d) Place the mixture on a balance and measure the (loss in) mass (1) at appropriate time intervals (1)

OR BY OTHER SUITABLE METHOD
eg. sample at intervals / quench (1) titration (1)
Q. 9 (a) (i) They are both elements in their standard states.
(ii) $\Delta \mathrm{H}=\sum \Delta \mathrm{H}_{\mathrm{f}}$ products $-\sum \Delta \mathrm{H}_{\mathrm{f}}$ reactants
$=(-286+0)-(-368+0)$
$=-286+368=(+) 82\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
or by a cycle where correct cycle drawn (1) correct answer (1)
(b) (i)

exothermic profile drawn (1)
uncatalysed / catalysed line labelled (1)
(ii) I number of moles of benzene $=2000$

II mole ratio is $1: 1$
(1)
\therefore moles of phenol produced $=\frac{2000 \times 95}{100}=1900$
mass $=M_{\mathrm{r}} \times$ number of moles $=94 \times 1900=178.6 / 179 \mathrm{~kg}$ (1)
alternatively
$78(\mathrm{~g} / \mathrm{kg})$ of benzene gives $94(\mathrm{~g} / \mathrm{kg})$ of phenol
$\therefore 1(\mathrm{~g} / \mathrm{kg})$ of benzene gives $94 / 78(\mathrm{~g} / \mathrm{kg})$ of phenol
$\therefore 156(\mathrm{~kg})$ of benzene gives $94 \times 156 / 78(\mathrm{~kg})$ of phenol $=188(\mathrm{~kg})(1)$ but 95% yield $\therefore \frac{188 \times 95}{100}=178.6 / 179(\mathrm{~kg})$ (1)
(iii) Look for at least four relevant positive points
e.g. - the process uses a (heterogeneous) catalyst, which can easily be separated from the gaseous products (thus saving energy)

- the only other product of the reaction is gaseous nitrogen, which is non-toxic / safe / not a harmful product
- the process uses nitrogen(I) oxide which is used up, rather than being released into the atmosphere from the other process (and causing global warming)
- the process is exothermic and the heat produced can be used elsewhere
- a relatively moderate operating temperature reduces overall costs
- high atom economy

Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning QWC
Q. $10 \quad$ (a) $\quad K \rightarrow \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} \quad$ (1)

There is one outer electron and the loss of this electron gives a stable potassium ion with a full outer shell/ ion more stable than the atom
(b) (i) $\Delta \mathrm{T}=4.8^{\circ} \mathrm{C}$

$$
\begin{gather*}
\Delta \mathrm{H}=\frac{-250 \times 4.2 \times 4.8}{0.125}=-40320 \mathrm{~J} \mathrm{~mol}^{-1} /-40.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1}\\
\quad \checkmark \text { for negative sign } \\
\checkmark \text { correct value with relevant units }
\end{gather*}
$$

(ii) e.g. The volume used was not precise in measurement as the readings on a beaker are only approximate (1)
The experiment was performed in a beaker and this was not insulated and heat was lost to the surroundings (1)
there may be other acceptable answers here, for example based on slow dissolving
(c) (i) 0.050
(ii) $(0.050 \times 24.0)=1.20\left(\mathrm{dm}^{3}\right)$
(iii) $\% \mathrm{v} / \mathrm{v}=1.20 \times 0.001 \times 100$ (1) $=0.06$ (1)
(d) An increase in the concentration of (aqueous) carbon dioxide causes the position of equilibrium to move to the right. (1)
This causes calcium carbonate to become aqueous calcium (and hydrogencarbonate) ions / dissolve (1) weakening shells / causing difficulty in formation of shells (1)

Organisation of information clearly and coherently; using specialist vocabulary where appropriate
Q. 11 (a) (i) I burette / (graduated) pipette

II volumetric / graduated / standard flask
(ii) 0.0064
(iii) $1.20 \mathrm{~g} / 100 \mathrm{~cm}^{3}$ solution
(iv) $12.0 \mathrm{~g} / 100 \mathrm{~cm}^{3}$ solution
(b) (i) The catalyst is in a different physical state to the reactants.
(ii) Bonds broken

Bonds made $\quad 3 \mathrm{C}-\mathrm{H} \rightarrow 1236$
$1 \mathrm{C}-\mathrm{O} \rightarrow 360$
$3 \mathrm{O}-\mathrm{H} \rightarrow 1389$
Total -2985 kJ
$\Delta \mathrm{H}=2850-2985=-135 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(1)
(c) Relative molecular mass is a relative quantity (based on ${ }^{1} 12$ th of the ${ }^{12} \mathrm{C}$ atom as one unit).
(d) (i) The rate of the forward reaction is equal to the rate of the backward reaction.
(ii) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

