

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

JANUARY 2013

© WJEC CBAC Ltd.

GCE CHEMISTRY - CH1

JANUARY 2013 MARK SCHEME

SECTION A

Q.3
$$A_r = (12.0 \times 6) + (88.0 \times 7) (1) = \frac{72.0 + 616.0}{100} = 6.88 (1)$$
 [2]

Q.4 (a)
$$\Delta H = \Delta H_2 + \Delta H_3 - \Delta H_1$$
 [1]
(b) $\frac{1}{2}N_2(g) + \frac{1}{2}O_2(g) \rightarrow NO(g)$ state symbols requires [1]

Q.6	Ti <u>60</u> 48	O <u>40</u> 16	(1)	
	= 1.25	= 2.5	∴ 1:2	
	∴ TiO2	(1)		[2]

Section A Total [10]

SECTION B

Q.7	(a)	(i)	A helium (atom) nucleus / 2 protons and 2 neutrons / ${}^{4} ext{He}^{2+}$	[1]
-----	-----	-----	--	-----

(ii) b......22 (1) X.....Ne (1) [2]

(iii)
$$(4 \times 2.6) = 10.4$$
 [1]

(b) The frequency of the green line at 569 nm is HIGHER. than the frequency of the yellow-orange line at 589 nm. Another line is seen at 424 nm, this is caused by an electronic transition of HIGHER. energy than the line at 569 nm.
[1]

(c) (i) Na₂CO₃ NaHCO₃ 2H₂O

$$\downarrow$$
 \downarrow \downarrow \downarrow
106 + 84 + 36 (1) \rightarrow 226 [1]

(or by other appropriate method – note mark is for the working)

(ii) Atom economy =
$$\frac{M_r \text{ required product } \times 100}{\text{Total '}M_r \text{'} \text{ of the reactants}}$$
 (1)

$$= \frac{318 \times 100}{452} = 70.4 / 70.35 (\%) (1) [2]$$

- (iii) Carbon dioxide is produced (and released into the air) and this contributes to the greenhouse effect / increases acidity of sea (1) It should be trapped / a use found for it. (1) [2]
- (d) (i) Water is acting as a proton donor (1) and this combines with the carbonate ion $/ CO_3^{2^-}$, giving the hydrogencarbonate ion $/ HCO_3^{-}$ (1) [2]
 - (ii) The pH scale runs from 0-14 / measure of acidity / alkalinity (1) pH <7 acid / >7 alkali (1) acid stronger as pH value decreases / alkali stronger as pH value increases / 11.4 is strong alkali (1) [3]

Total [15]

© WJEC CBAC Ltd.

Q.8 (a)

 (i) He may have lost carbon dioxide through leaks, this would have given a lower volume than expected. (1) He used lower concentration of acid / diluted the acid with water and the rate of carbon dioxide evolution was slower than expected. (1)
 [2]

- (ii) The concentration of acid is higher in the first half (1) the collision rate is higher (1) [2]
- (iii) eg k = $\frac{V}{T}$ (1) \therefore k = $\frac{130}{298}$ / 0.436 \therefore V = 0.436 × 323 = 141 (cm³) (1) or $\frac{V_1}{V_2} = \frac{T_1}{T_2}$ (1) \therefore V₁ = $\frac{323 \times 130}{298}$ = 141 (cm³) (1) [2]
- (b) (i) 260 (cm^3) [1]
 - (ii) 0.45 (g) (0.43–0.48) [1]
- (c) The diagram shows two reasonable distribution curves with T₂ flatter and 'more to the right' than T₁. (1)
 Activation energy correctly labelled, or mentioned in the writing (1)
 Fraction of molecules having the required activation energy is much greater at a higher temperature (thus increasing the frequency of successful collisions) (in words) (1) [3]

The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter QWC [1]

(d) Place the mixture on a balance and measure the (loss in) mass (1) at appropriate time intervals (1)

OR BY OTHER SUITABLE METHOD

eg. sample at intervals / quench (1) titration (1) [2]

Total [14]

Q.9 (a) (i) They are both elements in their standard states. [1]
(ii)
$$\Delta H = \sum \Delta H_{1} \operatorname{products} - \sum \Delta H_{1} \operatorname{reactants}$$
 (1)
 $= (-286 + 0) - (-368 + 0)$
 $= -286 + 368 = (+)82 (kJ mol-1)$ (1) [2]
or by a cycle where correct cycle drawn (1) correct answer (1)
(b) (i)
(b) (i)
(c) $I_{1} = 0$
 $I_{2} = 0$

© WJEC CBAC Ltd.

- (iii) Look for at least four relevant positive points
 - e.g. the process uses a (heterogeneous) catalyst, which can easily be separated from the gaseous products (thus saving energy)
 - the only other product of the reaction is gaseous nitrogen, which is non-toxic / safe / not a harmful product
 - the process uses nitrogen(I) oxide which is used up, rather than being released into the atmosphere from the other process (and causing global warming)
 - the process is exothermic and the heat produced can be used elsewhere
 - a relatively moderate operating temperature reduces overall costs
 - high atom economy

Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning QWC

Total [14]

[1]

[4]

(i)
$$\Delta T = 4.8 \,^{\circ}C$$
 (1)
 $\Delta H = -\frac{250 \times 4.2 \times 4.8}{0.125} = -40320 \,\mathrm{J \, mol^{-1}} / -40.3 \,\mathrm{kJ \, mol^{-1}}$ (2) [3]
 \checkmark for negative sign
 \checkmark correct value with relevant units

(ii) e.g. The volume used was not precise in measurement as the readings on a beaker are only approximate (1)
 The experiment was performed in a beaker and this was not insulated and heat was lost to the surroundings (1)

there may be other acceptable answers here, for example based on slow dissolving

(ii)
$$(0.050 \times 24.0) = 1.20 \,(\text{dm}^3)$$
 [1]

(iii) % v/v =
$$\frac{1.20 \times 0.001 \times 100}{2}$$
 (1) = 0.06 (1) [2]

An increase in the concentration of (aqueous) carbon dioxide causes the position of equilibrium to move to the right. (1)
 This causes calcium carbonate to become aqueous calcium (and hydrogencarbonate) ions / dissolve (1)
 weakening shells / causing difficulty in formation of shells (1)

Organisation of information clearly and coherently; using specialist vocabulary where appropriate QWC [1]

Total [15]

(b)

0 1 1	(0)	(;)	hurotto / (graduatad) pipatta	[4]			
Q.11	(a)	(i)	I burette / (graduated) pipette	[1]			
			II volumetric / graduated / standard flask	[1]			
		(ii)	0.0064	[1]			
		(iii)	1.20 g / 100 cm ³ solution				
		(iv)	12.0 g / 100 cm ³ solution	[1]			
	(b)	(i)	The catalyst is in a different physical state to the reactants.	[1]			
		(ii)	Bonds broken 2 H-H \rightarrow 872 1 C-O \rightarrow 360 1 C-H \rightarrow 412 1 O-H \rightarrow 463 1 C=O \rightarrow 743				
			Total +2850 kJ (1)				
			Bonds made $3 \text{ C-H} \rightarrow 1236$ 1 C-O $\rightarrow 360$ 3 O-H $\rightarrow 1389$				
			Total -2985 kJ (1)				
			$\Delta H = 2850 - 2985 = -135 \text{ kJ mol}^{-1} $ (1)	[3]			
	(c)	Relative molecular mass is a relative quantity (based on $^{1}/_{12}$ th of the 12 C atom as one unit). [1]					
	(d)	(i) The rate of the forward reaction is equal to the rate of the backward reaction. [1]					
		(ii)	C_2H_4O	[1]			
			Total	[12]			
Total Section B [70]							